Preprints
S. Legramanti, D. Durante, P. Alquier (2023+), Concentration of discrepancy-based ABC via Rademacher complexity. Submitted [arXiv]
F. Pavone, S. Legramanti, D. Durante (2023+), Learning and Forecasting of Age–Specific Period Mortality via B–Spline Processes with Locally–Adaptive Dynamic Coefficients. Under revision [arXiv]
Refereed journals
1. S. Legramanti, T. Rigon, D. Durante, D. B. Dunson (2022), Extended Stochastic Block Models with Application to Criminal Networks. Annals of Applied Statistics, 16(4), 2369-2395 [journal, arXiv, GitHub, YouTube]
2. S. Legramanti, T. Rigon, D. Durante (2022), Bayesian Testing for Exogenous Partition Structures in Stochastic Block Models. Sankhya A, 84, 108–126 [journal, arXiv, GitHub]
3. S. Legramanti, D. Durante, D. B. Dunson (2020), Bayesian Cumulative Shrinkage for Infinite Factorizations. Biometrika, 107(3), 745-752 [journal, arXiv, GitHub][Winner of the 2021 ASA-SBSS Student Paper Competition]
Conference proceedings
4. V. Ghidini, S. Legramanti, R. Argiento (2023), Extended Stochastic Block Model with Spatial Covariates for Weighted Brain Networks. Bayesian Statistics, New Generations New Approaches (BAYSM2022), to appear
5. V. Ghidini, S. Legramanti, R. Argiento (2023), Binomial Extended Stochastic Block Model for Brain Networks, Book of short papers SIS 2023, to appear
6. S. Legramanti, T. Rigon, D. Durante (2022), Bayesian Clustering of Brain Regions via Extended Stochastic Block Models. Book of short papers SIS 2022, 45-51 [proceedings]
7. F. Pavone, S. Legramanti (2022), Bayesian Analysis of Mortality in Iceland via Locally Adaptive Splines. Book of short papers SIS 2022, 520-525 [proceedings]
8. S. Legramanti (2020), Variational Bayes for Gaussian Factor Models under the Cumulative Shrinkage Process. Book of short papers SIS 2020, 416-420 [proceedings, arXiv]
9. S. Legramanti (2019), Bayesian Analysis of Privacy Attacks on GPS Trajectories. Book of Short Papers SIS 2019, 379-386 [proceedings, arXiv]